Mark 0.00 out of
1.00

If A is a 4×3-matrix, $b \in \mathbb{R}^{\mathbb{4}}$, and the system $A x=b$ is consistent, then $A x=b$ has a unique solution.

Select one:
a. False

- b. True x

The correct answer is: False
" A 'sa singular matix, then the ssitem $A x=b$ has infinte unube of fosutions

Select one:

- a. True \boldsymbol{x}
b. False

Question $\mathbf{4}$
Correct
Mark 1.00 out of
1.00

Question 5
Correct
Mark 1.00 out of
1.00
1.00

Let $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 3 & -2 & 2 \\ -2 & 1 & 3\end{array}\right)$,then $\operatorname{det}(A)=$
Select one:

- a. 4
b. 0
c. 8
d. 1

The correct answer is: 4
Question 6
Correct
Mark 1.00 out of
1.00

If $(A \mid b)=\left(\begin{array}{ccc|c}1 & 1 & 2 & 4 \\ 2 & -1 & 2 & 6 \\ 1 & 1 & 2 & 5\end{array}\right)$, then the system $A x=b$ is inconsistent

Select one:

a. False

- b. True \checkmark

The correct answer is: True

Question 7
Incorrect
Mark 0.00 out of
1.00

If a matrix B is obtained from A by multiplying a row of A by a real number c, then $|A|=c|B|$.
Select one:
a. False
© b. True \mathbf{x}

The correct answer is: False
Question 8
Incorrect
Mark 0.00 out of
1.00
1.00

In the square linear system $A x=b$, if A is singular and b is not a linear combination of the columns of A then the system

Select one:
a. can not tell
b. has a unique solution

- c. has infinitely many solutions \boldsymbol{x}
d. has no solution

The correct answer is: has no solution
Question 9
Correct
Mark 1.00 out of
1.00

If E is an elementary matrix of type III, then E^{T} is

Select one:
a. not an elementary matrix
© b. an elementary matrix of type III \checkmark
c. an elementary matrix of type I
d. an elementary matrix of type II

The correct answer is: an elementary matrix of type III
Question 10
Correct
Mark 1.00 out of
1.00

If $A B=0$, where A and B are $n \times n$ nonzero matrices. Then

Select one:
a. both A, B are nonsingular.

- b. both A, B are singular.
c. either A or B is singular
d. either $A=0$ or $B=0$

The correct answer is: both A, B are singular.
Question 11
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$-skew-symmetric matrices $\left(A\right.$ is skew symmetric if $A^{T}=-A$), then $A B+B A$ is symmetric Select one:
a. False

- b. True \checkmark

The correct answer is: True

Question 12
Correct
Mark 1.00 out of
1.00

If A is a 3×3 matrix such that $\operatorname{det}(A)=2$, then $\operatorname{det}(3 A)=6$

Select one:
a. True

- b. False \checkmark

Question 13
Correct
Mark 1.00 out of
1.00

The adjoint of the matrix $\left(\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right)$ is

Select one:
a. $\left(\begin{array}{cc}-5 & 3 \\ 2 & -1\end{array}\right)$
b. $\left(\begin{array}{cc}-3 & 5 \\ 1 & -2\end{array}\right)$
c. $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$
d. $\left(\begin{array}{cc}-2 & 1 \\ 5 & -3\end{array}\right)$

The correct answer is: $\left(\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right)$

Question 14
Correct
Mark 1.00 out of
1.00

Let $(1,2,0)^{T}$ and $(2,1,1)^{T}$ be the first two columns of a 3×3 matrix A and $(1,1,1)^{T}$ be a solution of the system $A x=(2,1,3)^{T}$. Then the third column of the matrix A is

Select one:

a. $(1,1,0)^{T}$.

- b. $(-1,-2,2)^{T}$.
c. $(4,-1,1)^{T}$.
d. $(-1,-1,2)^{T}$.

The correct answer is: $(-1,-2,2)^{T}$.

Question 15
Correct
Mark 1.00 out of
1.00
$(0,0,0)^{T}$ is a linear combination of the vectors $(1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}$
Select one:

- a. True \checkmark
b. False

The correct answer is: True
Question 16
Correct
Mark 1.00 out of
1.00

Let A be a 4×4-matrix such that $A\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, then
Select one:
a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$
(-) b. A is singular.
c. A is the zero matrix
d. The system $A x=0$ has only one solution

Question 17
Incorrect
Mark 0.00 out of
1.00
\qquad

Question 18
Incorrect
Mark 0.00 out of
1.00

If A is a 4×3 matrix such that $A x=0$ has only the zero solution, and $b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)$, then the system $A x=b$

Select one:
a. is either inconsistent or has an infinite number of solutions
b. is inconsistent
c. is either inconsistent or has one solution

- d. has exactly one solution \mathbf{x}

The correct answer is: is either inconsistent or has one solution
Question 19
Correct
Mark 1.00 out of
1.00
1.00

If x_{0} is a solution of the nonho
Then $x_{1}+x_{0}$ is a solution of
Select one:
a. the system $A x=0$
b. the system $A x=2 b$
c. the system $A x=A b$
d. the system $A x=b$
a

The correct answer is: the system $A x=b$

Question 20
Correct
Mark 1.00 out of
1.00

If A, B are two square nonzero matrices and $A B=0$ then both A and B are singular

Select one:
a. False
(b. True V

```
Question 21
Incorrect
Mark 0.00 out of
1.00
```

Question 22
Correct
Mark 1.00 out of
1.00
Question 23
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, $b \in \mathbb{R}^{n}$, then Select one:
a. The system $A x=b$ is inconsistent
b. The system $A x=b$ has infinitely many solutions
c. The system $A x=b$ has only two solutions

- d. The system $A x=b$ has a unique solution
correct answer is: The system $A x=b$ has a unique solution

Question 24
Correct
Mark 1.00 out of
1.00

If A, B are $n \times n$ symmetric matrices then $A B$ is symmetric.

Select one:

- a. False V
b. True

The correct answer is: False
Question 25
Correct
Mark 1.00 out of
1.00
1.00

If A is a 2×3-matrix, and $b=a_{2}$ (second column of A), then a solution to the system $A x=b$ is

Select one:
a. $x=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)$
b. $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$

- c. $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
d. $x=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$

The correct answer is: $x=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$

```
Question 26
Incorrect
Mark 0.00 out of
1.00
```

If A and B are $n \times n$ matrices such that $A x \neq B x$ for all nonzero $x \in \mathbb{R}^{n}$. Then

Select one:
a. $A-B$ is nonsingular.

- b. A and B are nonsingular. \mathbf{x}
c. $A-B$ is singular.
d. A and B are singular.

The correct answer is: $A-B$ is nonsingular.

Question 27
Correct
Mark 1.00 out of
1.00

If A is a nonsingular $n \times n$ matrix, then

Select one:

- a. There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.
b. There is a singular matrix C such that $A=C I$.
c. The system $A x=0$ has a nontrivial (nonzero) solution.
d. $\operatorname{det}(A)=1$

The correct answer is: There are elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $A=E_{1} E_{2} \cdots E_{k}$.

```
Question 28
Correct
Mark 1.00 out of
1.00
```

Any elementary matrix is nonsigular
Select one:
a. False
- b. True \checkmark
The correct answer is: True
Question 29
Correct
Mark 1.00 out of
1.00

If A is singular and B is nonsingular $n \times n$-matrices, then $A B$ is Select one:

- a. singular \downarrow
b. may or may not be singular
c. nonsingular

The correct answer is: singular
Question 30
Correct
Mark 1.00 out of
1.00

In the $n \times n$-linear system $A x=b$, if A is singular and b is a linear combination of the columns of A then the system has

Select one:
a. exactly two solutions
b. no solution
c. a unique solution

- d. infinitely many solutions \checkmark

The correct answer is: infinitely many solutions
\leftarrow Announcements
Jump to...

